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Chaos and experimental resolution
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~Received 27 October 1999!

We study systematically what levels of finite-resolution in measurements significantly affect the calculation
of time delays, embedding dimensions, and Lyapunov exponent for two well-known chaotic systems. We find
a tradeoff between the information contained in the measured time series and what is lost. Moreover, the
‘‘noise’’ series is low-dimensional and highly correlated.
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INTRODUCTION

A finite-resolution~coarse! measurement of a chaotic dy
namical system leads to limited prediction of its futu
through the butterfly effect@1,2#. In this paper we explore
systematically the effects of coarse measurements in
time-series analysis@3–6# of chaotic systems. Such measur
ments can originate in systems with an inherently discr
variable ~e.g., population number!, the counting of rare
events, a continuous-variable measurement which is d
tized by a computer, or a process in which interspike int
vals @7# are discretized through the sampling process.

We study noiseless time series of the Lorenz@8# and
Hénon @9# systems, measured with different degrees of re
lution, as well as the measurement noise series~MNS!, or
difference between the original and measured series, w
can be interpreted as lost information. Our main findings
as follows. ~1! Coarse measurements affect the analysis
time series: we find thresholds for the appropriate estima
of time delays and embedding dimensions, crucial for attr
tor reconstruction and further analysis. Incorrect estimati
of these quantities can propagate to the calculation of m
sures of chaos such as Lyapunov exponents.~2! The recon-
struction of the MNS and the time dependence of its aver
mutual information~AMI ! show that the MNS contains valu
able low-dimensional information about the time ser
which is lost in the measurement process. Information ab
the dynamical system is split between the coarse meas
ment and the MNS, with more of it going to the former
the measurement becomes finer.

Our work spans the area between symbolic dynamics
time-series analysis of continuous-valued data. The form
obtainable through a suitable encoding of measured
@10#, can be analyzed by methods reviewed in detail in R
@11#. We only know of one previous systematic study
resolution effects@12#, very different from ours. Our work
also differs from previous studies@13# of finite-state dynami-
cal systems. We preserve the underlying real-number
namics, and discretize onlythe measurementitself. There-
fore, we do not run into the problem of artificially short lim
cycles@13#.
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THE DATA

For the Hénon map we used 9800 points, and for t
Lorenz system, we generated 33 760 points for the variabx
with a fourth-order Runge-Kutta method and time steph
50.01 ~about 400 maxima!. Neither series has transients.
both cases we normalized the series between 0 and 1,
rounded it off to the nearest~below! multiple of the discreti-
zation stepd522m, with m integer @14#. We denote the
MNS with a D symbol preceding the variable name. In Fi
1 we show both a discretized and a MNS series for the
renz map andm54.

RESEARCH PROTOCOL

We used the csp package~chaotic signal processor! @4,15#
for our time-series analysis. The initial step is finding
optimal delay time for reconstructing trajectories; we us
the first minimum of AMI @16# vs time. Too short a delay
will not allow the variables to decorrelate, resulting in a fla
tened attractor, while too long a time will produce a rando
looking object. The first minimum of AMI correspond
roughly to a time sufficient for a small region of the attract
to stretch, but not long enough to fold.

With the optimum delay timet, one can construc
dE-dimensional vectors (x(t),x(t1t), . . . ,x„t1(dE
21)t…). The optimal embedding dimensiondE @17# needs to
be determined, for example, with the calculation of fa

ic
FIG. 1. ~a! Discretized time series, and~b! MNS time series, for

the Lorenz map with discretization 224. Dx is the difference be-
tween the discretized and the original series.
3685 © 2000 The American Physical Society
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nearest neighbors@18#. Projections of the attractor ont
lower dimensions thandE will result in points that appea
very close, when in reality they are not. The fraction of fa
nearest neighbors decreases as one embeds the attrac
larger and larger dimensions, thus unfolding the attractor;dE
has been reached when the fraction goes to zero.

IDENTIFYING CHAOS IN MEASURED SERIES

We describe the results obtained for the Lorenz variablx,
for 1<m<20. In Fig. 2 we show the AMI,I (t) vs time, for
several values ofm. Identification of the first minimum is
quite difficult for small values ofm, as shown in the figure
The wrong choice can affect measures of chaos~e.g., expo-
nents! that are calculated based on this measure. We see
already form57 the AMI curve is starting to resemble th
AMI curve obtained with full machine precision. In fact, fo
m>6 we start identifying the correct minimum,t;16– 17,
given in the figure by a vertical line. Since AMI is a functio
of the form I;(p log p, we expect that with coarser resolu
tion it will yield larger values. This is observed in Fig. 2, an
confirmed in our studies of the He´non map.

In Fig. 3 we showP(d), the percentage of false neare
neighbors for reconstructions of the attractor ind dimen-
sions, and several values ofm. We see that form55,6 em-
bedding dimensions of 1 and 2 are~incorrectly! identified.
For m>7 the correct result,dE53 is given; we showm
515. We note thatP(d) does not start to increase again f
large dimensiond;8, which would be a typical signature o
a system with noise. This suggests further study of the na
of the MNS, which we report below. The results for smallm
can be seen as an artifact of projecting a set of lattice po
onto a lower dimension. With the He´non map similar results
are obtained. For intermediate values ofm, P(d) increases
slightly above zero for 5<d<8. The effect disappears wit
increasingm and d. We have no explanation for this fac
Finally, we have studied resolution effects in a direct test

FIG. 2. Average mutual information@ I (t)# for discretized series
as function of time (t). A, m54; B, m56; C, m57; D, full ma-
chine precision.

FIG. 3. Percentage of false near neighborsP(d) as function of
dimensiond for discretized series. Circles,m55; squares,m56;
diamonds,m515. Ford>2 the circles are hidden behind the oth
two symbols.
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determinism which is independent ofP(d). We have found
results that are consistent with the findings of this paragr
@19#.

THE MEASUREMENT NOISE SERIES

We have verified that the MNS is not ordinary nois
Figures 4 and 5 show, respectively, reconstructions of
measured series andDx. In each case the first minimum o
I (t) has been used for the reconstruction. We see that as
series of data gains resolution and information, the ot
loses it. Figure 5 is particularly telling: it demonstrates th
the information thrown away in an imperfect measuremen
highly correlated, and can contain valuable informati
about the dynamical system.~For largerm, not shown, the
reconstructions rapidly lose structure.! For m51, a symbolic
dynamics which codes turns around each half of the attra
with ones and zeros, respectively, requires both the
cretized series and the MNS. The former provides inform
tion about which lobe of the Lorenz attractor is being o
bited, and the latter about the number of turns; see also
1 for m54. Details of this work will be presented elsewhe
@20#.

RESOLUTION EFFECTS ON LYAPUNOV EXPONENTS

We studied the Lyapunov exponents obtained from
Lorenzx series with varyingm. We fixeddE53, the correct
result, to guarantee the appropriate Lyapunov spectrum
gardless of the results given by the package. We used
the value oft obtained from each AMI plot, and the corre
result (t;16– 17). We show the latter in Fig. 6 as a functio
of m. The horizontal line is the result obtained with fu
machine precision. Region A corresponds to negative ex

FIG. 4. Two-dimensional reconstruction of time series, with d
cretization~a! m56 and~b! m515.

FIG. 5. Two-dimensional reconstruction of measurement no
series~MNS!, Dx for m51.
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nents, and region B to results 7–300 times larger than
correct exponent; these are due to the coarseness of the
surement. For 11,m,16 the results become better, but c
be quite sensitive to the choice oft ~for example, form
513, using the package-supplied time delay results in a la
negative exponent!. Only for m>16 the results are within
1% of the undiscretized time series. Preliminary results@20#
obtained with a series of 3000 points of the Lorenz syst
indicate that the effects of finite resolution on both the ide
tification and characterization of chaos worsen for sho
series@21#.

DISCUSSION

In this paper we have explored the effects of fini
resolution measurements on the identification and quantifi
tion of chaos from time series. The consistent use of a c
mercial package~csp! which yields reasonable results fo
data with machine precision lends support to our conc

FIG. 6. Largest Lyapunov exponent vs resolution~m! for the
Lorenz system. Horizontal line: result for undiscretized series.
gion A: the largest exponent is incorrectly calculated to be nega
region B: the largest exponent is 7–300 times larger than the co
result.
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sions. Based on Fig. 2, we find that the information lost
these effects cannot be considered as high-dimensi
noise. This observation sheds new light on the interact
between signal and noise that takes place in a classical m
surement: while noise intrinsic to the system~e.g., thermal!
or resulting from nonsystematic measurement errors@22# is
often high dimensional and can be reduced, resolution e
is of the same dimensionality~see Fig. 5! as the original data,
and therefore the measured data cannot be improved by
dard noise-reduction techniques@3–6#. The information con-
tained in the measurement ‘‘noise’’ is simply lost. Note th
this mechanism is distinct from the filtering of small,high-
dimensionalcomponents of a signal through finite-resolutio
measurements discussed in Abarbanel’s book@3#, and in no
way contradicts it. Compare our results, however, with
discussion of resolution noise on page 55 of Ref.@6#.

Perhaps not many physical observations are subject to
severe discretization,m<7, for which we observe the wors
problems; the counting of rare events is the most likely c
didate. However, our results are relevant to a recent re
@23# that so far no unambiguous observations of chaos
wild animal populations have been made: this may be cau
in part by the limited resolution (61 individual! of the ob-
servations. Moreover, our results also bring out the difficu
of identifying chaotic behavior in few-agent~typically 100!
simulations of social systems@24# of recent interest to physi
cists, as well as in traffic-flow and stock market time seri
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