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Chaos and experimental resolution
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We study systematically what levels of finite-resolution in measurements significantly affect the calculation
of time delays, embedding dimensions, and Lyapunov exponent for two well-known chaotic systems. We find
a tradeoff between the information contained in the measured time series and what is lost. Moreover, the
“noise” series is low-dimensional and highly correlated.
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INTRODUCTION THE DATA

. . . For the Hmon map we used 9800 points, and for the
A finite-resolution(coars¢ measurement of a chaotic dy- Lorenz system, we generated 33 760 points for the variable

namical system leads to limited prediction of its future, v o fourth-order Runge-Kutta method and time step
through the butterfly effectl,2]. In this paper we explore _ g 41 (apout 400 maxima Neither series has transients. In

systematically the effects of coarse measurements in thgyih cases we normalized the series between 0 and 1, and
time-series analysi8—6] of chaotic systems. Such measure- qynded it off to the nearegbelow) multiple of the discreti-
ments can originate in systems with an inherently discretgtjon stepd=2"", with m integer [14]. We denote the
variable (e.g., population numbgr the counting of rare NS with aA symbol preceding the variable name. In Fig.

events, a continuous-variable measurement which is digit we show both a discretized and a MNS series for the Lo-
tized by a computer, or a process in which interspike interrenz map andn=4.

vals[7] are discretized through the sampling process.

“We study noiseless time se'ries.of the Lordi® and RESEARCH PROTOCOL
Henon[9] systems, measured with different degrees of reso- o
lution, as well as the measurement noise seflslS), or We used the csp packagehaotic signal processa4,15]

difference between the original and measured series, whiclr our time-series analysis. The initial step is finding an
can be interpreted as lost information. Our main findings ar@ptimal delay time for reconstructing trajectories; we used
as follows. (1) Coarse measurements affect the analysis ofh€ first minimum of AMI[16] vs time. Too short a delay
time series: we find thresholds for the appropriate estimatioM/ill not allow the variables to decorrelate, resulting in a flat-
of time delays and embedding dimensions, crucial for attracten€d attractor, while too long a time will produce a random-
tor reconstruction and further analysis. Incorrect estimationéom(Ing Obje(_:t' The_ﬂ_rst minimum  of AMI corresponds
of these quantities can propagate to the calculation of me oughly to a time sufficient for a small region of the attractor
sures of chaos such as Lyapunov exponegi@)sThe recon- 0 str.etch, but nqt long enough.to fold.

struction of the MNS and the time dependence of its averag With the optimum delay times, one can construct

. : : SE—dimensionaI vectors  X(t),x(t+7), ... x(t+(dg
mutual informatior(AMI) show that the MNS contains valu- 7 y 1) "o ohtimal embedding dimensiai [17] needs to
able low-dimensional information about the time series

o . _ be determined, for example, with the calculation of false
which is lost in the measurement process. Information about

the dynamical system is split between the coarse measure- 1
ment and the MNS, with more of it going to the former as
the measurement becomes finer.

Our work spans the area between symbolic dynamics and x(®)
time-series analysis of continuous-valued data. The former,
obtainable through a suitable encoding of measured data
[10], can be analyzed by methods reviewed in detail in Ref. (a)OO t 55
[11]. We only know of one previous systematic study of
resolution effect§12], very different from ours. Our work
also differs from previous studi¢&3] of finite-state dynami-
cal systems. We preserve the underlying real-number dy- Ax(t)
namics, and discretize onlyhe measuremeritself. There-
fore, we do not run into the problem of artificially short limit

cycles[13]. (b) 0 0 t 2.5

0.0625

FIG. 1. (a) Discretized time series, ar{d) MNS time series, for
* Author to whom correspondence should be addressed. Electronibe Lorenz map with discretization 2. Ax is the difference be-
address: p@faoa.uniandes.edu.co tween the discretized and the original series.
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FIG. 2. Average mutual informatigH (t) ] for discretized series
as function of time (). A, m=4; B, m=6; C, m=7; D, full ma-
chine precision. X(t+1)

nearest neighbor$18]. Projections of the attractor onto 0 g
lower dimensions thawg will result in points that appear (b) 0 x(t) 1
very close, when in reality they are not. The fraction of false

nearest neighbors decreases as one embeds the attractor irF_'G-.4- Two-dimensional reconstruction of time series, with dis-
larger and larger dimensions, thus unfolding the attracter; Cretization(@ m=6 and(b) m=15.

has been reached when the fraction goes to zero.

determinism which is independent B{d). We have found
results that are consistent with the findings of this paragraph
IDENTIFYING CHAOS IN MEASURED SERIES [19].

We describe the results obtained for the Lorenz variable
for 1=m=20. In Fig. 2 we show the AMIL(t) vs time, for
several values ofn. Identification of the first minimum is We have verified that the MNS is not ordinary noise.
quite difficult for small values ofm, as shown in the figure. Figures 4 and 5 show, respectively, reconstructions of the
The wrong choice can affect measures of ch@sg., expo-  measured series aniix. In each case the first minimum of
nents that are calculated based on this measure. We see thgft) has been used for the reconstruction. We see that as one
already form=7 the AMI curve is starting to resemble the series of data gains resolution and information, the other
AMI curve obtained with full machine precision. In fact, for |oses it. Figure 5 is particularly telling: it demonstrates that
m=6 we start identifying the correct minimum;~16—17,  the information thrown away in an imperfect measurement is
given in the figure by a vertical line. Since AMl is a function highly correlated, and can contain valuable information
of the forml~Zplogp, we expect that with coarser resolu- ahout the dynamical systertfFor largerm, not shown, the
tion it will yleld Iargervalues. ThiS is observed in Fig. 2, and reconstructions rapid|y lose structurEorm=1, a Symboﬁc
confirmed in our studies of the iHen map. dynamics which codes turns around each half of the attractor

In Fig. 3 we showP(d), the percentage of false nearestwith ones and zeros, respectively, requires both the dis-
neighbors for reconstructions of the attractordndimen-  cretized series and the MNS. The former provides informa-
sions, and several values of We see that fom=5,6 em-  tion about which lobe of the Lorenz attractor is being or-
bedding dimensions of 1 and 2 afiecorrectly identified.  pited, and the latter about the number of turns; see also Fig.

For m=7 the correct resultdz=3 is given; we showm 1 for m=4. Details of this work will be presented elsewhere
=15. We note thaP(d) does not start to increase again for [20].

large dimensiom~ 8, which would be a typical signature of

a system with noise. This suggests further study of the nature g5 UTION EFFECTS ON LYAPUNOV EXPONENTS

of the MNS, which we report below. The results for snmall

can be seen as an artifact of projecting a set of lattice points We studied the Lyapunov exponents obtained from the

onto a lower dimension. With the lHen map similar results Lorenzx series with varyingn. We fixeddg= 3, the correct

are obtained. For intermediate valuesmaf P(d) increases result, to guarantee the appropriate Lyapunov spectrum, re-

slightly above zero for £d<8. The effect disappears with gardless of the results given by the package. We used both

increasingm and d. We have no explanation for this fact. the value ofr obtained from each AMI plot, and the correct

Finally, we have studied resolution effects in a direct test foresult (-~16—17). We show the latter in Fig. 6 as a function
of m. The horizontal line is the result obtained with full

THE MEASUREMENT NOISE SERIES

100~ machine precision. Region A corresponds to negative expo-
0.5
P(d)
AX(t+71)
0
1 d 12

FIG. 3. Percentage of false near neighbB(sl) as function of
dimensiond for discretized series. Circlesy=5; squaresm=6;
diamondsm=15. Ford=2 the circles are hidden behind the other = FIG. 5. Two-dimensional reconstruction of measurement noise
two symbols. series(MNS), Ax for m=1.
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0.04 sions. Based on Fig. 2, we find that the information lost by
these effects cannot be considered as high-dimensional
noise. This observation sheds new light on the interaction
between signal and noise that takes place in a classical mea-

A surement: while noise intrinsic to the systéeng., thermal
or resulting from nonsystematic measurement erfagg is
05 5 10 20 often high dimensional and can be reduced, resolution error
m is of the same dimensionalitgee Fig. $as the original data,

) and therefore the measured data cannot be improved by stan-
FIG. 6. Largest Lyapunov exponent vs resolution for the  ga4 nojse-reduction techniquig-6]. The information con-
L.orenz. system. Horizontal Ilqe: result for undiscretized series. Refained in the measurement “noise” is simply lost. Note that
gion A: the largest exponent is _mcorrectly calculated to be negatlvet is mechanism is distinct from the filtering of smaiigh-
region B: the largest exponent is 7—300 times larger than the Corre%ﬂmensionabomponents of a signal through finite-resolution
result measurements discussed in Abarbanel’s b@&kand in no

. . way contradicts it. Compare our results, however, with the
nents, and region B to results 7—300 times larger than thaiSCussion of resolution noise on page 55 of Ref.

correct e’i(plg ne;t]é thgsleﬁattrr]e due tlct) trge coars%n?tss Otf) t?e mea'Perhaps not many physical observations are subject to the
surement. or 1L m € resulls become betler, but Can g q e discretizatiom=7, for which we observe the worst

be quite sensitive to the cho!ce @f (for example, fprm roblems; the counting of rare events is the most likely can-
=13, using the package-supplied time delay results |n-a-larg idate. However, our results are relevant to a recent report
nga?vE expg.neht(_)nlc)j/ f_or m= 16 thPe rﬁsglts are vl\gthln [23] that so far no unambiguous observations of chaos in

6 of the undiscretized time series. Preliminary resi@ wild animal populations have been made: this may be caused

obtained with a series of 3000 points of the Lorenz system, part by the limited resolution¥ 1 individua) of the ob-

|_n_d|ca_1te that the EﬁeCtS.Of f_|n|te resolution on both the Iden'servations. Moreover, our results also bring out the difficulty
tification and characterization of chaos worsen for shorte

: bf identifying chaotic behavior in few-ageftypically 100
series|21]. simulations of social systenfig4] of recent interest to physi-
cists, as well as in traffic-flow and stock market time series.
DISCUSSION
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